MathDB
all pairs of functions

Source: 2019 Czech-Polak-Slovak P4

July 7, 2019
algebrafunction

Problem Statement

Given a real number α\alpha, find all pairs (f,g)(f,g) of functions f,g:RRf,g :\mathbb{R} \to \mathbb{R} such that xf(x+y)+αyf(xy)=g(x)+g(y)                      ,x,yR.xf(x+y)+\alpha \cdot yf(x-y)=g(x)+g(y) \;\;\;\;\;\;\;\;\;\;\; ,\forall x,y \in \mathbb{R}.