MathDB
Functional equation

Source: APMO 1994

March 11, 2006
functioninductionalgebra unsolvedalgebra

Problem Statement

Let f:RRf: \Bbb{R} \rightarrow \Bbb{R} be a function such that (i) For all x,yRx,y \in \Bbb{R}, f(x)+f(y)+1f(x+y)f(x)+f(y) f(x)+f(y)+1 \geq f(x+y) \geq f(x)+f(y) (ii) For all x[0,1)x \in [0,1), f(0)f(x)f(0) \geq f(x), (iii) f(1)=f(1)=1-f(-1) = f(1) = 1. Find all such functions ff.