MathDB
Problems
Contests
National and Regional Contests
India Contests
Regional Mathematical Olympiad
2011 India Regional Mathematical Olympiad
3
a,b,c in HP; (a^2+b^2) etc in GP [RMO2-2011, India]
a,b,c in HP; (a^2+b^2) etc in GP [RMO2-2011, India]
Source:
December 31, 2011
inequalities
arithmetic sequence
geometric sequence
Problem Statement
Let
a
,
b
,
c
>
0.
a,b,c>0.
a
,
b
,
c
>
0.
If
1
a
,
1
b
,
1
c
\frac 1a,\frac 1b,\frac 1c
a
1
,
b
1
,
c
1
are in arithmetic progression, and if
a
2
+
b
2
,
b
2
+
c
2
,
c
2
+
a
2
a^2+b^2,b^2+c^2,c^2+a^2
a
2
+
b
2
,
b
2
+
c
2
,
c
2
+
a
2
are in geometric progression, show that
a
=
b
=
c
.
a=b=c.
a
=
b
=
c
.
Back to Problems
View on AoPS