MathDB
Miklos Schweitzer 1970_11

Source:

October 22, 2008
limitprobability and stats

Problem Statement

Let ξ1,ξ2,... \xi_1,\xi_2,... be independent random variables such that Eξn=m>0 E\xi_n=m>0 and Var(ξn)=σ2<  (n=1,2,...) . \textrm{Var}(\xi_n)=\sigma^2 < \infty \;(n=1,2,...)\ . Let {an} \{a_n \} be a sequence of positive numbers such that an0 a_n\rightarrow 0 and n=1an= \sum_{n=1}^{\infty} a_n= \infty. Prove that P(limnk=1nakξk=)=1. P \left( \lim_{n\rightarrow \infty} %Error. "diaplaymath" is a bad command. \sum_{k=1}^n a_k \xi_k =\infty \right)=1. P. Revesz