MathDB
Many terms, unusual inequality

Source: Science ON 2021 grade VIII/4

March 8, 2021
Inequalityinequalitiesalgebra

Problem Statement

Consider positive real numbers x,y,zx,y,z. Prove the inequality 1x+1y+1z+9x+y+z3((12x+y+1x+2y)+(12y+z+1y+2z)+(12z+x+1x+2z)).\frac 1x+\frac 1y+\frac 1z+\frac{9}{x+y+z}\ge 3\left (\left (\frac{1}{2x+y}+\frac{1}{x+2y}\right )+\left (\frac{1}{2y+z}+\frac{1}{y+2z}\right )+\left (\frac{1}{2z+x}+\frac{1}{x+2z}\right )\right ).
(Vlad Robu \& Sergiu Novac)