MathDB
IMOC 2020 G2 concurency of AO_{An}, BO_{Bn}, CO_{Cn}

Source: https://artofproblemsolving.com/community/c6h2254883p17398793

September 1, 2020
geometryconcurrentconcurrencyCircumcenter

Problem Statement

Let OO be the circumcenter of triangle ABCABC. Define OA0=OB0=OC0=OO_{A0} = O_{B0} = O_{C0} = O. Recursively, define OAnO_{An} to be the circumcenter of BOA(n1)C\vartriangle BO_{A(n-1)}C. Similarly define OBn,OCnO_{Bn}, O_{Cn}. Find all n1n \ge 1 so that for any triangle ABCABC such that OAn,OBn,OCnO_{An}, O_{Bn}, O_{Cn} all exist, it is true that AOAn,BOBn,COCnAO_{An}, BO_{Bn}, CO_{Cn} are concurrent.
(Li4)