MathDB
IMC 2002 Problem 9

Source: IMC 2002

March 7, 2021
real analysisSummation

Problem Statement

For each n1n\geq 1 let an=k=0knk!,    bn=k=0(1)kknk!.a_{n}=\sum_{k=0}^{\infty}\frac{k^{n}}{k!}, \;\; b_{n}=\sum_{k=0}^{\infty}(-1)^{k}\frac{k^{n}}{k!}. Show that anbna_{n}\cdot b_{n} is an integer.