MathDB
Problems
Contests
Undergraduate contests
IMC
2002 IMC
9
IMC 2002 Problem 9
IMC 2002 Problem 9
Source: IMC 2002
March 7, 2021
real analysis
Summation
Problem Statement
For each
n
≥
1
n\geq 1
n
≥
1
let
a
n
=
∑
k
=
0
∞
k
n
k
!
,
b
n
=
∑
k
=
0
∞
(
−
1
)
k
k
n
k
!
.
a_{n}=\sum_{k=0}^{\infty}\frac{k^{n}}{k!}, \;\; b_{n}=\sum_{k=0}^{\infty}(-1)^{k}\frac{k^{n}}{k!}.
a
n
=
k
=
0
∑
∞
k
!
k
n
,
b
n
=
k
=
0
∑
∞
(
−
1
)
k
k
!
k
n
.
Show that
a
n
⋅
b
n
a_{n}\cdot b_{n}
a
n
⋅
b
n
is an integer.
Back to Problems
View on AoPS