MathDB
IMC 2003 Problem 11

Source: IMC 2003 Day 2 Problem 5

November 2, 2020
functioncollege contestsreal analysisIMC

Problem Statement

a) Show that for each function f:Q×QRf:\mathbb{Q} \times \mathbb{Q} \rightarrow \mathbb{R}, there exists a function g:QRg:\mathbb{Q}\rightarrow \mathbb{R} with f(x,y)g(x)+g(y)f(x,y) \leq g(x)+g(y) for all x,yQx,y\in \mathbb{Q}. b) Find a function f:R×RRf:\mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}, for which there is no function g:QRg:\mathbb{Q}\rightarrow \mathbb{R} such that f(x,y)g(x)+g(y)f(x,y) \leq g(x)+g(y) for all x,yRx,y\in \mathbb{R}.