MathDB
f(mn)=f(m)f(n) and f(m+n)=min(f(m),f(n)) if f(m)≠f(n) over N->N0

Source: IMOC 2017 N3

August 14, 2021
number theoryalgebrafefunctional equation

Problem Statement

Find all functions f:NN0f:\mathbb N\to\mathbb N_0 such that for all m,nNm,n\in\mathbb N, \begin{align*} f(mn)&=f(m)f(n)\\ f(m+n)&=\min(f(m),f(n))\qquad\text{if }f(m)\ne f(n)\end{align*}