MathDB
RMM2011, P 4, Day 2 - Arithmetic function

Source:

February 26, 2011
functionnumber theory proposednumber theory

Problem Statement

Given a positive integer n=i=1spiαi\displaystyle n = \prod_{i=1}^s p_i^{\alpha_i}, we write Ω(n)\Omega(n) for the total number i=1sαi\displaystyle \sum_{i=1}^s \alpha_i of prime factors of nn, counted with multiplicity. Let λ(n)=(1)Ω(n)\lambda(n) = (-1)^{\Omega(n)} (so, for example, λ(12)=λ(2231)=(1)2+1=1\lambda(12)=\lambda(2^2\cdot3^1)=(-1)^{2+1}=-1). Prove the following two claims:
i) There are infinitely many positive integers nn such that λ(n)=λ(n+1)=+1\lambda(n) = \lambda(n+1) = +1; ii) There are infinitely many positive integers nn such that λ(n)=λ(n+1)=1\lambda(n) = \lambda(n+1) = -1.
(Romania) Dan Schwarz