MathDB
Putnam 1967 A1

Source: Putnam 1967

May 13, 2022
Putnamtrigonometryinequalities

Problem Statement

Let f(x)=a1sinx+a2sin2x++ansinnxf(x)= a_1 \sin x + a_2 \sin 2x+\cdots +a_{n} \sin nx , where a1,a2,,ana_1 ,a_2 ,\ldots,a_n are real numbers and where nn is a positive integer. Given that f(x)sinx|f(x)| \leq | \sin x | for all real x,x, prove that a1+2a2++nan1.|a_1 +2a_2 +\cdots +na_{n}|\leq 1.