MathDB
Problems
Contests
International Contests
Baltic Way
2003 Baltic Way
6
Least number of indices with sum ≥ 0
Least number of indices with sum ≥ 0
Source: Baltic Way 2003
November 6, 2010
combinatorics proposed
combinatorics
Problem Statement
Let
n
≥
2
n\ge 2
n
≥
2
and
d
≥
1
d\ge 1
d
≥
1
be integers with
d
∣
n
d\mid n
d
∣
n
, and let
x
1
,
x
2
,
…
x
n
x_1,x_2,\ldots x_n
x
1
,
x
2
,
…
x
n
be real numbers such that
x
1
+
x
2
+
⋯
+
x
n
=
0
x_1+x_2+\cdots + x_n=0
x
1
+
x
2
+
⋯
+
x
n
=
0
. Show that there are at least
(
n
−
1
d
−
1
)
\binom{n-1}{d-1}
(
d
−
1
n
−
1
)
choices of
d
d
d
indices
1
≤
i
1
<
i
2
<
⋯
<
i
d
≤
n
1\le i_1<i_2<\cdots <i_d\le n
1
≤
i
1
<
i
2
<
⋯
<
i
d
≤
n
such that
x
i
1
+
x
i
2
+
⋯
+
x
i
d
≥
0
x_{i_{1}}+x_{i_{2}}+\cdots +x_{i_{d}}\ge 0
x
i
1
+
x
i
2
+
⋯
+
x
i
d
≥
0
.
Back to Problems
View on AoPS