MathDB
Problems
Contests
National and Regional Contests
Russia Contests
All-Russian Olympiad
1992 All Soviet Union Mathematical Olympiad
558
ASU 558 Commonwealth of Independent States 1992 x^4 +y^4+z^2>=xyz√8
ASU 558 Commonwealth of Independent States 1992 x^4 +y^4+z^2>=xyz√8
Source:
August 14, 2019
algebra
inequalities
Problem Statement
Show that
x
4
+
y
4
+
z
2
≥
x
y
z
8
x^4 + y^4 + z^2\ge xyz \sqrt8
x
4
+
y
4
+
z
2
≥
x
yz
8
for all positive reals
x
,
y
,
z
x, y, z
x
,
y
,
z
.
Back to Problems
View on AoPS