MathDB
Eventually Periodic Residues of Polynomial Indicate Rational Coefficients

Source: 2023 China Team Selection Test Round 2 Day 3 Problem 20

April 3, 2023
polynomialnumber theory

Problem Statement

Let a,b,da,b,d be integers such that a2\left|a\right| \geqslant 2, d0d \geqslant 0 and b(a+1)d+1b \geqslant \left( \left|a\right| + 1\right)^{d + 1}. For a real coefficient polynomial ff of degree dd and integer nn, let rnr_n denote the residue of [f(n)an]\left[ f(n) \cdot a^n \right] mod bb. If {rn}\left \{ r_n \right \} is eventually periodic, prove that all the coefficients of ff are rational.