MathDB
4 b_{n+1} <= P(1)^2

Source: P1 Francophone Math Olympiad Senior 2023

May 2, 2023
polynomialalgebrainequalities

Problem Statement

Let P(X)=anXn+an1Xn1++a1X+a0P(X) = a_n X^n + a_{n-1} X^{n-1} + \cdots + a_1 X + a_0 be a polynomial with real coefficients such that 0aia00 \leqslant a_i \leqslant a_0 for i=1,2,,ni = 1, 2, \ldots, n. Prove that, if P(X)2=b2n X2n +b2n1X2n1++bn+1Xn+1++b1X+b0P(X)^2 = b_{2n} X^{2n} + b_{2n-1} X^{2n-1} + \cdots + b_{n+1} X^{n+1} + \cdots + b_1 X + b_0, then 4bn+1P(1)24 b_{n+1} \leqslant P(1)^2.