MathDB
Floor and ceiling inequality with 2020

Source: Mexican Quarantine Mathematical Olympiad P1

April 25, 2020
ceiling functionfloor functioninequalities

Problem Statement

Let a,ba, b and cc be real numbers such that
a+b+c+a+b+b+c+c+a=2020\lceil a \rceil + \lceil b \rceil + \lceil c \rceil + \lfloor a + b \rfloor + \lfloor b + c \rfloor + \lfloor c + a \rfloor = 2020
Prove that
a+b+c+a+b+c1346\lfloor a \rfloor + \lfloor b \rfloor + \lfloor c \rfloor + \lceil a + b + c \rceil \ge 1346
Note: x\lfloor x \rfloor is the greatest integer less than or equal to xx, and x\lceil x \rceil is the smallest integer greater than or equal to xx. That is, x\lfloor x \rfloor is the unique integer satisfying xx<x+1\lfloor x \rfloor \le x < \lfloor x \rfloor + 1, and x\lceil x \rceil is the unique integer satisfying x1<xx\lceil x \rceil - 1 < x \le \lceil x \rceil.
Proposed by Ariel García