MathDB
Problems
Contests
National and Regional Contests
China Contests
China Western Mathematical Olympiad
2013 China Western Mathematical Olympiad
2
2013 China Western Mathematical Olympiad ,Problem 2
2013 China Western Mathematical Olympiad ,Problem 2
Source: China Lanzhou 17 Aug 2013
August 17, 2013
induction
inequalities proposed
inequalities
Problem Statement
Let the integer
n
≥
2
n \ge 2
n
≥
2
, and the real numbers
x
1
,
x
2
,
⋯
,
x
n
∈
[
0
,
1
]
x_1,x_2,\cdots,x_n\in \left[0,1\right]
x
1
,
x
2
,
⋯
,
x
n
∈
[
0
,
1
]
.Prove that
∑
1
≤
k
<
j
≤
n
k
x
k
x
j
≤
n
−
1
3
∑
k
=
1
n
k
x
k
.
\sum_{1\le k<j\le n} kx_kx_j\le \frac{n-1}{3}\sum_{k=1}^n kx_k.
1
≤
k
<
j
≤
n
∑
k
x
k
x
j
≤
3
n
−
1
k
=
1
∑
n
k
x
k
.
Back to Problems
View on AoPS