MathDB
(a_1+a_3+\ldots a_{2n+1})/(n+1) >= (a_2+a_4+\ldots a_{2n})/ n

Source: Polish MO Second Round 1971 p6

September 8, 2024
algebrainequalities

Problem Statement

Given an infinite sequence {an} \{a_n\} . Prove that if an+an+2>2an+1  for  n=1,2... a_n + a_{n+2} > 2a_{n+1} \ \ for \ \ n = 1, 2 ... then a1+a3+a2n+1n+1a2+a4+a2nn \frac{a_1+a_3+\ldots a_{2n+1}}{n+1} \geq \frac{a_2+a_4+\ldots a_{2n}}{n} for n=1,2, n = 1, 2, \ldots .