MathDB
Today's calculation of Integral 265

Source: 1985 Waseda University entrance exam/Education

January 11, 2008
calculusintegrationtrigonometrycalculus computations

Problem Statement

Supposed that f(x) f(x) has f(x) f'(x) and for any real numbers x, y x,\ y, \int_y^{x \plus{} y} f(t)\ dt \equal{} \int_0^x \{f(y)\cos t \plus{} f(t)\cos y\}\ dt holds. (1) Express f(x \plus{} y) in terms of f(x), f(y). f(x),\ f(y). (2) Find f'\left(x \plus{} \frac {\pi}{2}\right). Note that f\left(\frac {\pi}{2}\right) \equal{} 2. (3) Find f(x). f(x).