MathDB
2f(x+y+xy)= a f(x)+ bf(y)+f(xy)

Source: 1988 Greece MO Grade X p1

September 6, 2024
functionalgebrafunctional equation

Problem Statement

Find all functions f:RRf: \mathbb{R}\to\mathbb{R} that satidfy : 2f(x+y+xy)=af(x)+bf(y)+f(xy)2f(x+y+xy)= a f(x)+ bf(y)+f(xy) for any x,yRx,y \in\mathbb{R} όπου a,bRa,b\in\mathbb{R} with a2ab2ba^2-a\ne b^2-b