MathDB
IMC 2003 Problem 5

Source: IMC 2003

March 7, 2021
functionreal analysis

Problem Statement

Let g:[0,1]Rg:[0,1]\rightarrow \mathbb{R} be a continuous function and let fn:[0,1]Rf_{n}:[0,1]\rightarrow \mathbb{R} be a sequence of functions defined by f0(x)=g(x)f_{0}(x)=g(x) and fn+1(x)=1x0xfn(t)dt.f_{n+1}(x)=\frac{1}{x}\int_{0}^{x}f_{n}(t)dt. Determine limnfn(x)\lim_{n\to \infty}f_{n}(x) for every x(0,1]x\in (0,1].