MathDB
\sqrt{A} + \sqrt{B} + \sqrt{C} < 4 \sqrt{3}

Source: Polish MO second round 1956 p5

August 29, 2024
trigonometry

Problem Statement

Prove that the numbers A A , B B , C C defined by the formulas A=tgβtgγ+5,B=tgγtgα+5,C=tgαtgβ+5, A = tg \beta tg \gamma + 5,\\ B = tg \gamma tg \alpha + 5,\\ C = tg \alpha tg \beta + 5, where α>0 \alpha>0 , β>0 \beta > 0 , γ>0 \gamma > 0 and α+β+γ=90 \alpha + \beta + \gamma = 90^\circ , satisfy the inequality A+B+C<43. \sqrt{A} + \sqrt{B} + \sqrt{C} < 4 \sqrt{3}.