MathDB
Sum a_n = sum b_n

Source: APMO 1991

March 11, 2006
inequalitiesn-variable inequality

Problem Statement

Let a1a_1, a2a_2, \cdots, ana_n, b1b_1, b2b_2, \cdots, bnb_n be positive real numbers such that a1+a2++an=b1+b2++bna_1 + a_2 + \cdots + a_n = b_1 + b_2 + \cdots + b_n. Show that a12a1+b1+a22a2+b2++an2an+bna1+a2++an2 \frac{a_1^2}{a_1 + b_1} + \frac{a_2^2}{a_2 + b_2} + \cdots + \frac{a_n^2}{a_n + b_n} \geq \frac{a_1 + a_2 + \cdots + a_n}{2}