MathDB
Putnam 1996 B4

Source:

June 6, 2014
Putnamlinear algebramatrixtrigonometrycollege contests

Problem Statement

For any square matrix A\mathcal{A} we define sinA\sin {\mathcal{A}} by the usual power series. sinA=n=0(1)n(2n+1)!A2n+1 \sin {\mathcal{A}}=\sum_{n=0}^{\infty}\frac{(-1)^n}{(2n+1)!}\mathcal{A}^{2n+1} Prove or disprove : 2×2\exists 2\times 2 matrix AM2(R)A\in \mathcal{M}_2(\mathbb{R}) such that sinA=(1199601) \sin{A}=\left(\begin{array}{cc}1 & 1996 \\0 & 1 \end{array}\right)