MathDB
Inequality on Positive Reals

Source: 2020 China North Mathematical Olympiad Basic Level P1

August 4, 2020
inequalitiesalgebra

Problem Statement

For all positive real numbers a,b,ca,b,c, prove that a3+b3a2ab+b2+b3+c3b2bc+c2+c3+a3c2ca+a22(a2+b2+c2)\frac{a^3+b^3}{ \sqrt{a^2-ab+b^2} } + \frac{b^3+c^3}{ \sqrt{b^2-bc+c^2} } + \frac{c^3+a^3}{ \sqrt{c^2-ca+a^2} } \geq 2(a^2+b^2+c^2)