MathDB
Turkey NMO 1999, P-5, nice geometric inequality on altitudes

Source:

December 23, 2010
inequalitiesgeometrycircumcircletrigonometrygeometry proposed

Problem Statement

In an acute triangle ABC\vartriangle ABC with circumradius RR, altitudes AD,BE,CF\overline{AD},\overline{BE},\overline{CF} have lengths h1,h2,h3{{h}_{1}},{{h}_{2}},{{h}_{3}}, respectively. If t1,t2,t3{{t}_{1}},{{t}_{2}},{{t}_{3}} are lengths of the tangents from A,B,CA,B,C, respectively, to the circumcircle of triangle DEF\vartriangle DEF, prove that i=13(tihi)232R\sum\limits_{i=1}^{3}{{{\left( \frac{t{}_{i}}{\sqrt{h{}_{i}}} \right)}^{2}}\le }\frac{3}{2}R.