MathDB
Iranian sequence

Source: Iran second round 2024 p2

April 18, 2024
algebra and number theory

Problem Statement

Find all sequences (an)n1(a_n)_{n\geq 1} of positive integers such that for all integers n3n\geq 3 we have
1a1a3+1a2a4++1an2an=11a12+a22++an12. \dfrac{1}{a_1 a_3} + \dfrac{1}{a_2a_4} + \cdots + \dfrac{1}{a_{n-2}a_n}= 1 - \dfrac{1}{a_1^2+a_2^2+\cdots +a_{n-1}^2}.