China Team Selection Test 2013 TST 2 Day 2 Q3
Source: Nanjing high School , Jiangsu 19 Mar 2013
March 19, 2013
inequalitiesChina TSTalgebra
Problem Statement
Let be an integer and let be non-negative real numbers. Definite S_k=\sum_{i\equal{}0}^k \binom{k}{i}a_i for . Prove that\frac{1}{n} \sum_{k\equal{}0}^{n-1} S_k^2-\frac{1}{n^2}\left(\sum_{k\equal{}0}^{n} S_k\right)^2\le \frac{4}{45} (S_n-S_0)^2.