MathDB
(a^2+b^2+c^2)/(a+b+ c) is an integer if (a\sqrt{3}+b)/(b\sqrt3+c) is rational

Source: Mathcenter Contest / Oly - Thai Forum 2008 R1 p4 https://artofproblemsolving.com/community/c3196914_mathcenter_contest

November 10, 2022
number theoryalgebrarationalInteger

Problem Statement

Let a,ba,b and cc be positive integers that a3+bb3+c\frac{a\sqrt{3}+b}{b\sqrt3+c} is a rational number, show that a2+b2+c2a+b+c\frac{a^2+b^2+c^2}{a+b+ c} is an integer.
(Anonymous314)