MathDB
IMO ShortList 2008, Number Theory problem 5

Source: IMO ShortList 2008, Number Theory problem 5, German TST 6, P2, 2009

July 9, 2009
functionnumber theorymodular arithmeticdivisorIMO Shortlistfunctional equation

Problem Statement

For every nN n\in\mathbb{N} let d(n) d(n) denote the number of (positive) divisors of n n. Find all functions f:NN f: \mathbb{N}\to\mathbb{N} with the following properties: [*] d\left(f(x)\right) \equal{} x for all xN x\in\mathbb{N}. [*] f(xy) f(xy) divides (x \minus{} 1)y^{xy \minus{} 1}f(x) for all x x, yN y\in\mathbb{N}. Proposed by Bruno Le Floch, France