Miklos Schweitzer 1964_10
Source:
September 20, 2008
integrationprobability and stats
Problem Statement
Let be independent random variables such that P(\varepsilon_i\equal{}1)\equal{}P(\varepsilon_i\equal{}\minus{}1)\equal{}\frac 12 for all , and define S_k\equal{}\sum_{i\equal{}1}^k \varepsilon_i, \;1\leq k \leq 2n. Let denote the number of integers such that either , or S_k\equal{}0 and S_{k\minus{}1}>0. Compute the variance of .