MathDB
Geometric inequality

Source: 2012 CWMO P4

September 30, 2012
inequalitiesgeometrycircumcirclegeometry proposed

Problem Statement

PP is a point in the ΔABC\Delta ABC, ω\omega is the circumcircle of ΔABC\Delta ABC . BPω={B,B1}BP \cap \omega = \left\{ {B,{B_1}} \right\},CPω={C,C1}CP \cap \omega = \left\{ {C,{C_1}} \right\}, PEACPE \bot ACPFABPF \bot AB. The radius of the inscribed circle and circumcircle of ΔABC\Delta ABC is r,Rr,R. Prove EFB1C1rR\frac{{EF}}{{{B_1}{C_1}}} \geqslant \frac{r}{R}.