MathDB
Weird Inequality with 2019 variables

Source: 2019 China Second Round P2

September 8, 2019
algebracombinatoricsChina second roundinequalitiesn-variable inequality

Problem Statement

Let a1,a2,,ana_1,a_2,\cdots,a_n be integers such that 1=a1a2a2019=991=a_1\le a_2\le \cdots\le a_{2019}=99. Find the minimum f0f_0 of the expression f=(a12+a22++a20192)(a1a3+a2a4++a2017a2019),f=(a_1^2+a_2^2+\cdots+a_{2019}^2)-(a_1a_3+a_2a_4+\cdots+a_{2017}a_{2019}), and determine the number of sequences (a1,a2,,an)(a_1,a_2,\cdots,a_n) such that f=f0f=f_0.