MathDB
Miklós Schweitzer 1986, Problem 1

Source:

September 12, 2016
Miklos Schweitzercollege contestsset theory

Problem Statement

If (A,<)(A, <) is a partially ordered set, its dimension, dim(A,<)\dim (A, <), is the least cardinal κ\kappa such that there exist κ\kappa total orderings {<α ⁣:α<κ}\{ <_{\alpha} \colon \alpha < \kappa \} on AA with <=α<κ<α<=\cap_{\alpha < \kappa} <_\alpha. Show that if dim(A,<)>0\dim (A, <)>\aleph_0, then there exist disjoint A0,A1AA_0, A_1\subseteq A with dim(A0,<)\dim (A_0, <), dim(A1,<)>0\dim (A_1, <)>\aleph_0. [D. Kelly, A. Hajnal, B. Weiss]