MathDB
IMO ShortList 2001, algebra problem 5

Source: IMO ShortList 2001, algebra problem 5

September 30, 2004
inequalitiesalgebrarecurrence relationequationInteger sequenceIMO Shortlistimo shortlist 2001

Problem Statement

Find all positive integers a1,a2,,ana_1, a_2, \ldots, a_n such that 99100=a0a1+a1a2++an1an, \frac{99}{100} = \frac{a_0}{a_1} + \frac{a_1}{a_2} + \cdots + \frac{a_{n-1}}{a_n}, where a0=1a_0 = 1 and (ak+11)ak1ak2(ak1)(a_{k+1}-1)a_{k-1} \geq a_k^2(a_k - 1) for k=1,2,,n1k = 1,2,\ldots,n-1.