MathDB
Today's calculation of Integral 847

Source: 2012 Tohoku University entrance exam/Science, 2nd exam

September 12, 2012
calculusintegrationgeometryinradiuslimittrigonometrycalculus computations

Problem Statement

Consider a right-angled triangle with AB=1, AC=3, BAC=π2.AB=1,\ AC=\sqrt{3},\ \angle{BAC}=\frac{\pi}{2}. Let P1, P2, , Pn1 (n2)P_1,\ P_2,\ \cdots\cdots,\ P_{n-1}\ (n\geq 2) be the points which are closest from AA, in this order and obtained by dividing nn equally parts of the line segment ABAB. Denote by A=P0, B=PnA=P_0,\ B=P_n, answer the questions as below.
(1) Find the inradius of PkCPk+1 (0kn1)\triangle{P_kCP_{k+1}}\ (0\leq k\leq n-1).
(2) Denote by SnS_n the total sum of the area of the incircle for PkCPk+1 (0kn1)\triangle{P_kCP_{k+1}}\ (0\leq k\leq n-1).
Let In=1nk=0n113+(kn)2I_n=\frac{1}{n}\sum_{k=0}^{n-1} \frac{1}{3+\left(\frac{k}{n}\right)^2}, show that nSn3π4InnS_n\leq \frac {3\pi}4I_n, then find the limit limnIn\lim_{n\to\infty} I_n.
(3) Find the limit limnnSn\lim_{n\to\infty} nS_n.