MathDB
IMOC 2017 G3 (AB CX DX)^2+(CD AX BX)^2=(AD BX CX)^2 +(BC AX DX)^2

Source: https://artofproblemsolving.com/community/c6h1740077p11309077

March 20, 2020
geometryincenter

Problem Statement

Let ABCDABCD be a circumscribed quadrilateral with center OO. Assume the incenters of AOC,BOD\vartriangle AOC, \vartriangle BOD are I1,I2I_1, I_2, respectively. If circumcircles of AI1C\vartriangle AI_1C and BI2D\vartriangle BI_2D intersect at XX, prove the following identity: (ABCXDX)2+(CDAXBX)2=(ADBXCX)2+(BCAXDX)2(AB \cdot CX \cdot DX)^2 + (CD\cdot AX \cdot BX)^2 = (AD\cdot BX \cdot CX)^2 + (BC \cdot AX \cdot DX)^2