MathDB
APMO 2016: Functional equation

Source: APMO 2016, problem 5

May 16, 2016
functionfunctional equationalgebraAPMO

Problem Statement

Find all functions f:R+→R+f: \mathbb{R}^+ \to \mathbb{R}^+ such that (z+1)f(x+y)=f(xf(z)+y)+f(yf(z)+x),(z + 1)f(x + y) = f(xf(z) + y) + f(yf(z) + x), for all positive real numbers x,y,zx, y, z.
Fajar Yuliawan, Indonesia