MathDB
Problems
Contests
National and Regional Contests
China Contests
China Team Selection Test
2010 China Team Selection Test
3
China TST 2010, Problem 6
China TST 2010, Problem 6
Source:
August 28, 2010
inequalities
induction
algebra unsolved
algebra
Problem Statement
Given integer
n
≥
2
n\geq 2
n
≥
2
and real numbers
x
1
,
x
2
,
⋯
,
x
n
x_1,x_2,\cdots, x_n
x
1
,
x
2
,
⋯
,
x
n
in the interval
[
0
,
1
]
[0,1]
[
0
,
1
]
. Prove that there exist real numbers
a
0
,
a
1
,
⋯
,
a
n
a_0,a_1,\cdots,a_n
a
0
,
a
1
,
⋯
,
a
n
satisfying the following conditions: (1)
a
0
+
a
n
=
0
a_0+a_n=0
a
0
+
a
n
=
0
; (2)
∣
a
i
∣
≤
1
|a_i|\leq 1
∣
a
i
∣
≤
1
, for
i
=
0
,
1
,
⋯
,
n
i=0,1,\cdots,n
i
=
0
,
1
,
⋯
,
n
; (3)
∣
a
i
−
a
i
−
1
∣
=
x
i
|a_i-a_{i-1}|=x_i
∣
a
i
−
a
i
−
1
∣
=
x
i
, for
i
=
1
,
2
,
⋯
,
n
i=1,2,\cdots,n
i
=
1
,
2
,
⋯
,
n
.
Back to Problems
View on AoPS