MathDB
Turkey NMO 2007 1st Round - P22 (Number Theory)

Source:

October 5, 2012
modular arithmetic

Problem Statement

Let nn and mm be integers such that n2007mn\leq 2007 \leq m and nn1mm(mod5)n^n \equiv -1 \equiv m^m \pmod 5. What is the least possible value of mnm-n?
<spanclass=latexbold>(A)</span> 4<spanclass=latexbold>(B)</span> 5<spanclass=latexbold>(C)</span> 6<spanclass=latexbold>(D)</span> 7<spanclass=latexbold>(E)</span> 8 <span class='latex-bold'>(A)</span>\ 4 \qquad<span class='latex-bold'>(B)</span>\ 5 \qquad<span class='latex-bold'>(C)</span>\ 6 \qquad<span class='latex-bold'>(D)</span>\ 7 \qquad<span class='latex-bold'>(E)</span>\ 8