MathDB
Benelux Olympiad 2018, Problem 1

Source: Benelux 2018, Problem 1

April 28, 2018
BxMOBeneluxinequalitiesalgebra

Problem Statement

(a) Determine the minimal value of (x+1y)(x+1y2018)+(y+1x)(y+1x2018),\displaystyle\left(x+\dfrac{1}{y}\right)\left(x+\dfrac{1}{y}-2018\right)+\left(y+\dfrac{1}{x}\right)\left(y+\dfrac{1}{x}-2018\right), where xx and yy vary over the positive reals.
(b) Determine the minimal value of (x+1y)(x+1y+2018)+(y+1x)(y+1x+2018),\displaystyle\left(x+\dfrac{1}{y}\right)\left(x+\dfrac{1}{y}+2018\right)+\left(y+\dfrac{1}{x}\right)\left(y+\dfrac{1}{x}+2018\right), where xx and yy vary over the positive reals.