MathDB
Another Inequality

Source: IMOC 2021 A7

August 11, 2021
algebraInequalityinequalities

Problem Statement

For any positive reals a,b,c,da,b,c,d that satisfy a2+b2+c2+d2=4,a^2 + b^2 + c^2 + d^2 = 4, show that a3a+b+b3b+c+c3c+d+d3d+a+4abcd6.\frac{a^3}{a+b} + \frac{b^3}{b+c} + \frac{c^3}{c+d} + \frac{d^3}{d+a} + 4abcd \leq 6.