MathDB
0212 friendly permutations 2nd edition Round 1 p2

Source:

May 10, 2021
combinatorics2nd edition

Problem Statement

We call a permutation σ\sigma of the first nn positive integers friendly if and only if the following conditions are fulfilled: (1) σ(k+1){2σ(k),2σ(k)1,2σ(k)n,2σ(k)n1},k{1,2,...,n1}\sigma(k + 1) \in \{2\sigma(k), 2\sigma(k) - 1, 2\sigma(k) - n, 2\sigma(k) - n - 1\}, \forall k \in \{1, 2, ..., n - 1\} (2) σ(1){2σ(n),2σ(n)1,2σ(n)n,2σ(n)n1}\sigma(1) \in \{2 \sigma(n), 2\sigma(n) - 1, 2\sigma(n) - n, 2\sigma(n) - n - 1\}. Find all positive integers nn for which there exists such a friendly permutation of the first nn positive integers.