MathDB
sequence with coprime terms wanted

Source: 2006 VMEO III Seniors 11.4 Vietnamese Mathematics e - Olympiad https://artofproblemsolving.com/community/c2463155_vmeo_iii

September 17, 2021
number theorycoprimeLCM

Problem Statement

Given an integer a>1a>1. Let p1<p2<...<pkp_1 < p_2 <...< p_k be all prime divisors of aa. For each positive integer nn we define:
C0(n)=a2n,C1(n)=a2np12,....,Ck(n)=a2npk2C_0(n) = a^{2n}, C_1(n) =\frac{a^{2n}}{p^2_1}, .... , C_k(n) =\frac{a^{2_n}}{p^2_k} A=a2+1A = a^2 + 1 T(n)=AC0(n)1T(n) = A^{C_0(n)} - 1 M(n)=LCM(a2n+2,AC1(n)1,...,ACk(n)1)M(n) = LCM(a^{2n+2}, A^{C_1(n)} - 1, ..., A^{C_k(n)} - 1) An=T(n)M(n)A_n =\frac{T(n)}{M(n)}
Prove that the sequence A1,A2,...A_1, A_2, ... satisfies the properties: (i) Every number in the sequence is an integer greater than 11 and has only prime divisors of the form am+1am + 1. (ii) Any two different numbers in the sequence are coprime.