MathDB
China TST 1997 5-element subsets

Source: China TST 1997, problem 5

May 22, 2005
combinatorics unsolvedcombinatorics

Problem Statement

Let nn be a natural number greater than 6. XX is a set such that X=n|X| = n. A1,A2,,AmA_1, A_2, \ldots, A_m are distinct 5-element subsets of XX. If m>n(n1)(n2)(n3)(4n15)600m > \frac{n(n - 1)(n - 2)(n - 3)(4n - 15)}{600}, prove that there exists Ai1,Ai2,,Ai6A_{i_1}, A_{i_2}, \ldots, A_{i_6} (1i1<i2<,i6m)(1 \leq i_1 < i_2 < \cdots, i_6 \leq m), such that k=16Aik=6\bigcup_{k = 1}^6 A_{i_k} = 6.