MathDB
Problems
Contests
Undergraduate contests
Miklós Schweitzer
1970 Miklós Schweitzer
10
Miklos Schweitzer 1970_10
Miklos Schweitzer 1970_10
Source:
October 22, 2008
limit
real analysis
real analysis unsolved
Problem Statement
Prove that for every
ϑ
\vartheta
ϑ
,
0
<
ϑ
<
1
0<\vartheta<1
0
<
ϑ
<
1
, there exist a sequence
λ
n
\lambda_n
λ
n
of positive integers and a series
∑
n
=
1
∞
a
n
\sum_{n=1}^{\infty} a_n
∑
n
=
1
∞
a
n
such that (i)
λ
n
+
1
−
λ
n
>
(
λ
n
)
ϑ
\lambda_{n+1}-\lambda_n > (\lambda_n)^{\vartheta}
λ
n
+
1
−
λ
n
>
(
λ
n
)
ϑ
, (ii)
lim
r
→
1
−
∑
n
=
1
∞
a
n
r
λ
n
\lim_{r\rightarrow 1^-} \sum_{n=1}^{\infty} a_nr^{\lambda_n}
lim
r
→
1
−
∑
n
=
1
∞
a
n
r
λ
n
exists, (iii)
∑
n
=
1
∞
a
n
\sum _{n=1}^{\infty} a_n
∑
n
=
1
∞
a
n
is divergent. P. Turan
Back to Problems
View on AoPS