MathDB
Variant on old FE, f(xf(x+y))

Source: 2021 Israel TST 8 P2

May 31, 2022

Problem Statement

Find all functions f:RRf:\mathbb{R}\to \mathbb{R} so that for any reals x,yx,y the following holds: f(xf(x+y))+f(f(y)f(x+y))=(x+y)2f(x\cdot f(x+y))+f(f(y)\cdot f(x+y))=(x+y)^2