MathDB
A condition which implies linearity

Source: Miklós Schweitzer 2013, P8

July 12, 2014
functionreal analysisreal analysis unsolved

Problem Statement

Let f:RR{f : \Bbb{R} \rightarrow \Bbb{R}} be a continuous and strictly increasing function for which f1(f(x)+f(y)2)(f(x)+f(y))=(x+y)f(x+y2) \displaystyle f^{-1}\left(\frac{f(x)+f(y)}{2}\right)(f(x)+f(y)) =(x+y)f\left(\frac{x+y}{2}\right) for all x,yR(f1{x,y \in \Bbb{R}} ({f^{-1}} denotes the inverse of f){f}). Prove that there exist real constants a0{a \neq 0} and b{b} such that f(x)=ax+b{f(x)=ax+b} for all xR.{x \in \Bbb{R}}.
Proposed by Zoltán Daróczy