MathDB
Prove f(x+y+xy)=f(x)+f(y)+f(xy) implies f(x+y)=f(x)+f(y)

Source:

July 17, 2012
functionalgebra proposedalgebra

Problem Statement

Let f:RRf:\mathbb{R}\longrightarrow \mathbb{R} be a function such that f(x+y+xy)=f(x)+f(y)+f(xy)f(x+y+xy)=f(x)+f(y)+f(xy) for all x,yRx, y\in\mathbb{R}. Prove that ff satisfies f(x+y)=f(x)+f(y)f(x+y)=f(x)+f(y) for all x,yRx, y\in\mathbb{R}.