MathDB
2013 JBMO Shortlist G1

Source: 2013 JBMO Shortlist G1

October 8, 2017
geometryJBMO

Problem Statement

Let AB{AB} be a diameter of a circle ω{\omega} and center O{O} , OC{OC} a radius of ω{\omega} perpendicular to ABAB,M{M} be a point of the segment (OC)\left( OC \right) . Let N{N} be the second intersection point of line AM{AM} with ω{\omega} and P{P} the intersection point of the tangents of ω{\omega} at points N{N} and B.{B.} Prove that points M,O,P,N{M,O,P,N} are cocyclic.
(Albania)